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Report G910461-21

Analytical Study of Catalytic Reactors

for Hydrazine Decomposition

Quarterly Progress Report No. 6
October 15, 1967 - January 1k, 1968

Contract NAS 7-458

SUMMARY

The Research Laboratories of United Aircraft Corporation under Contract
NAS T7-458 with the National Aeronautics and Space Administration are performing
an analytical study of catalytic reactors for hydrazine decomposition. This
report summarizes work performed during the seventh quarterly contract period
from October 15, 1967 to January 1k, 1968. Work during this reporting period
has included the debugging and running of the computer program representing the
two-dimensional steady-state model of a distributed-feed catalyzed hydrazine
decomposition reaction chamber. Calculations have been made of the effects on
steady-~-state temperature and reactant concentration distributions of nonuniform
radial injection and of catalyst bed configurations exhibiting both radial and
axial nonuniformities.

Empirical predictions have been developed of one-dimensional steady-state
temperature and fractional ammonia dissociation profiles in hydrazine reactors
packed with Shell 405 catalyst particles. The empirical correlations were
developed on the basis of many runs made with the steady-state computer pro-
gram developed during the first year of effort on the present contract. It
was found that fractional ammonia dissociation and bulk fluid temperature are
easily predicted for a broad range of operating conditions for cases in which
most of the hydrazine decomposition occurs in the first few tenths of an inch
of the reactor; this rapid hydrazine decomposition rate is associated with
reactors packed with particles 25 mesh or smaller for approximately 0.2 in.
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INTRODUCTION

Under Contract NAS 7-458, the Research Laboratories of United Aircraft
Corporation are performing analytical studies of the behavior of distributed-
feed catalytic reactors for hydrazine decomposition. The specific objectives
of this program are (a) to develop computer programs for predicting the tem-
rerature and concentration distributions in monopropellant hydrazine catalytic
reactors in which hydrazine can be injected at arbitrary axial and radial
locations in the reaction chamber and (b) to perform calculations using these
computer programs to demonstrate the effects of various system parameters on
the performance of the reactor.

Progress previously reported in the first three guarterly reports
(Refs. 1, 2 and 3) and in the first annual report (Ref. 4) included the develop-
ment of computer programs which describe the steady-state and transient behavior
of a reactor system in which complete radial mixing in the free-gas (or liquid)
phase was assumed. Progress described in the fourth and fifth quarterly reports
(Refs. 5 and 6) included an extension of the computer program describing the
steady-state model to permit radial as well as axial variations in temperature
and concentrations. The program contains a description of the turbulent dif-
fusion of heat and mass in the interstitial phase along with heat and mass
diffusion within the catalyst particles and between the particles and the inter-
stitial phase. During this reporting period attention has been focused on
debugging and running the computer program representing the two-dimensional
steady-state model in order to evaluate steady-state reactor behavior. In
addition, the one-dimensional steady-state program has been used to develop
empirical correlations which predict axial temperature and fractional ammonia
dissociation profiles in hydrazine reactors packed with Shell 405 catalyst
particles.
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DISCUSSION

Effort during the seventh quarterly reporting period of Contract NAS 7-458
has involved (a) debugging the computer program representing the two-dimensional
steady-state model, (b) running this program to evaluate the effects on steady-
state temperature and reactant concentration distributions of nonuniform radial
injection and of catalyst bed configurations exhibiting both radial and axial
nonuniformities, and (c) using the one-dimensional program to develop empirical
correlations to predict axial temperature and fractional ammonia dissociation
profiles in hydrazine reactors packed with Shell 405 catalyst particles. This
effort is described in detail in succeeding sections of this report.

Two-Dimensional Steady-State Program

A series of calculations was made using the two-dimensional steady-state
computer program in order to examine the effectiveness of the two-dimensional
model and to evaluate the effects on system performance of nonuniform radial
injection and of catalyst bed configurations exhibiting both radial and axial
nonuniformities. The calculated results illustrated in Figs. 1 through 12
refer to a reactor 3 in. in diameter into which liquid hydrazine is injected
at the upstream end of the reactor only. For these calculations the upstream
chamber pressure was taken as 100 psia and the hydrazine feed temperature was
taken as 530 deg R.

Axial temperature profiles at various radial locations are plotted in
Fig. 1 for a case in which a radial nonuniformity in mass flow rate, G, is
represented as a step function (see Fig. 1). 1In this case the catalyst bed
packing was taken to consist of 25-30 mesh catalyst particles for the first
0.2 in. and 1/8 in. x 1/8 in. cylindrical pellets for the remainder of the bed.
This configuration is referred to in the figures as the "standard bed con-
figuration". Turbulent diffusion of heat, which tends to reduce radial tem-
perature gradients, is more pronounced in the downstream end of the reactor.
Here the catalyst particle size is larger, and both eddy conductivity and eddy
diffusivity are directly proportional to particle size. The consequences of
radial heat conduction are complicated somewhat by the simultaneous turbulent
diffusion of mass. Higher temperatures are associated with more hydrazine
decomposition; thus high temperature regions may lose heat by radial conduction,
but may gain hydrazine from adjoining low temperature regions by radial dif-
fusion of mass. Subsequent decomposition of this hydrazine may lead to even
higher temperatures. For the case considered here, these combined effects lead
to the temperature distribution shown in Fig. 1. For comparison purposes, the
axial temperature profile corresponding to a radially uniform mass flow rate
of 3.0 lb/fte-sec is also plotted in Fig. 1. This is the average mass flow
rate calculated by averaging the actual mass flow rate profile over the cross-
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sectional area of the reactor. The mole-fraction distributions of hydrazine
and ammonia associated with the temperature distribution shown in Fig. 1 are
illustrated in Figs. 2 and 3 respectively.

The results of similar calculations made for a continuously varying
injection profile are shown in Figs. 4 through 6. The mass flow rate profile
used for these calculations is plotted in Fig. 3. As in the first set of
calculations, the average mass flow rate is 3.0 lb/ftg-sec.

The effects on temperature and reactant concentration distributions of
two catalyst bed configurations exhibiting both radial and axial nonuniformities
are illustrated in Figs. T through 12. TFor both of these configurations the
mass flow rate was taken as uniform at 3.0 lb/ftz-sec. The calculated temper-
ature, mole fraction of hydrazine, and mole fraction of ammonia distributions
corresponding to the bed configuration shown in Fig. 7 are plotted in Figs. 7
through 9 respectively. Similar calculations corresponding to the bed con-
figuration shown in Fig. 10 are plotted in Figs. 10 through 12.

One-Dimensional Steady-State Program

A series of runs were made with the one-dimensional steady-state computer
program in order to develop empirical correlations to predict axial temperature
and fractional ammonia dissoclation profiles in hydrazine reactors packed with
Shell LO5 catalyst particles. FEmpirical correlations were developed on the
basis of about 65 runs representing different combinations of mass flow rates,
pressures and catalyst bed configurations. It was found that fractional ammonia
dissociation and bulk fluid temperature can be predicted using the equations

| - Fractional Ammonia Dissociation = ¢

and

T, = 1020 {cb + [0.075 (P/loom]} + 1535

where

® = (066) (6/2)°28 {[(0.550%'" - 0.17) 1000/P1°2 ] + 0.7}

and z and a are expressed in ft, G in lb/ftg-sec, P in psia, and T; in deg R.
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These equations are illustwrated in Figs. 13 and 1L respectively for cases in
which most of the hydrazine decomposition occurs in the first few tenths of an
inch of the reactor; this rapid hydrazine decomposition rate is associated
with reactors packed with particles 25 mesh or smaller for approximately 0.2
in. For these cases the correlations depicted in Figs. 13 and 14 work well
for axial distances greater than one inch and for values of pressure, P,
between 10 and 1000 psia, mass flow rate, G, between 1.4l and 1.l 1b/ft°-sec
(0.01 and 0.1 1b/in.“-sec respectively) and equivalent spherical radius, a,
between 0.001 and 0.01 ft. For a reactor packed with small ( < 25 mesh)
particles for the first few tenths of an inch and larger particles thereafter,
the particle radius, a, refers to the larger particles.

In Figs. 13 and lh, Rocket Research experimental data are plotted along
with the empirical predictions and the results of sample cases run using the
one-dimensional steady-state program. Values of fractional ammonia dissocia-
tion obtained from the steady-state program are plotted for axial locations
between 1 and 6 inches while values of bulk fluid temperature obtained from
the program are plotted only for axial locations between 3 and 6 inches.

It should be emphasized that these empirical correlations do not correctly
predict the behavior of reactors in which hydrazine decomposition is slow,
for example reactors which are uniformly packed with large catalyst particles,
such as 1/8 in. X 1/8 in. cylinders. The correlations work quite well though for

catalyst bed configurations consisting of 25-30 mesh particles for the first
0.2 in. and 1/8 in. x 1/8 in. cylindrical pellets for the remainder of the bed.



¢910Lk61-21

REFERENCES

Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decom-
position. United Aircraft Research Laboratories Report E910L61-3, Quarterly
Progress Report No. 1, Contract NAS 7-458, July 1966.

Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decom-
position. United Aircraft Research Laboratories Report E910L61-6, Quarterly
Progress Report No. 2, Contract NAS T7-458, October 1966,

Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decom-
position. United Aircraft Research Laboratories Report F910L61-9, Quarterly
Progress Report No. 3, Contract NAS 7-458, January 1967.

Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decom-
position. United Aircraft Research Laboratories Report F9th6l-l2, First
Annual Progress Report, Contract NAS 7-458, July 1967.

Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decom-
position. United Aircraft Research Laboratories Report FOl0k61-15, Quarterly
Progress Report No. 4, Contract NAS T-L58, July 1967.

Kesten, A. S.: Analytical Study of Catalytic Reactors for Hydrazine Decom-
position. United Aircraft Research Laboratories Report F910461-18, Quarterly
Progress Report No. 5, Contract NAS T-458, October 1967.



@9104k61-21

Z|

LIST OF SYMBOLS

Radius of spherical particle, ft

Total external surface of catalyst particle per unit volume of bed, £t
Reactant concentration in interstitial fluid, 1b/ft3

Reactant concentration in gas phase within the porous particle, lb/fta
Equals  Cp — (Cp)g, 1b/£t3

Specific heat of fluid in the interstitial phase, Btu/lb - deg R

Average specific heat of fluid in the interstitial phase, Btu/lb - deg R
Specific heat of catalyst particle, Btu/lb ~ deg R

Diffusion coefficient of reactant gas in the interstitial fluid, ftg/sec
Diffusion coefficient of reactant gas in the porous particle, ft2/sec

Rate of feed of hydrazine from distributed injectors into the system,
1b/ft3-sec

Conversion factor, (lby/lbs) £t/sec?

Mass flow rate, 1b/fté-sec

Enthalpy, Btu/lb

Heat transfer coefficient, Btu/ft2-sec-deg R

Heat of reaction (negative for exothermic reaction), Btu/lb
Mass transfer coefficient, ft/sec
Reaction rate constant, equals ae””, sec-1

Thermal conductivity of the porous catalyst particle, Btu/ft-sec-deg R

Molecular weight, 1b/1b mole

Average molecular weight, 1b/1b mole
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[het

hom

Order of decomposition reaction
Chamber pressure, psia
Activation energy, Btu/lb mole
Radial distance, ft

[ T R S £ T RS 3 i
Rate of (heterogencous) chemical reaction on the

lb/ft3-sec

[

atalyst surfaces,

Rate of (homogeneous) chemical reaction in the interstitial phase,
1b/ft3-sec

Gas constant, equals 10.73 psia - ft3/lb mole - deg R, or,
Radius of reactor

Time, sec

Actual time minus time required, under steady-state conditions, for
liquid hydrazine to flow from the reactor inlet to the interface between
the liquid-vapor and vapor regions, sec

Temperature, deg R

Weight fraction of reactant in interstitial phase

Radial distance from the center of the spherical catalyst particle, ft
Axial distance, ft

Preexponential factor in rate equation

Intraparticle void fraction

Equals [—-(cp)sr+op] // [Kp(Tp)S]

Equals Q/R (Tp)s

Interparticle void fraction

Eddy diffusivity, ft°/sec

Eddy conductivity, Btu/ft-sec-deg R
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K Viscosity of interstitial fluid, 1b/ft - sec

p;  Density of interstitial fluid, 1b/ft3

Ps Bulk density of catalyst particle, lb/ft3

Subscripts

F Refers

{ Refers

to feed

to interstitial phase

| Axial distance index in transient model

P Refers

S Refers
Superscripts

J Refers

L Refers

v Refers

to gas within the porous catalyst particle

to surface of catalyst particle

to chemical species
to liquid at wvaporization temperature

to vapor at vaporization temperature
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MOLE — FRACTION OF AMMONIA IN INTERSTITIAL PHASE
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MOLE - FRACTION OF HYDRAZINE IN INTERSTITIAL PHASE
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MOLE-FRACTION OF AMMONIA IN INTERSTITIAL PHASE
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